Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1215: 123579, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2239446

RESUMO

Recombinant SARS-CoV-2 trimeric spike protein produced by mammalian cell culture is a potential candidate for a COVID-19 vaccine. However, this protein is much larger than most typical biopharmaceutical proteins and its large-scale manufacture is therefore challenging. Particularly, its purification using resin-based chromatography is difficult as the diffusive transport of this protein to and from its binding site within the pores of the stationary phase particles is slow. Therefore, very low flow rates need to be used during binding and elution, and this slows down the purification process. Also, due to its large size, the binding capacity of this protein on resin-based media is low. Membrane chromatography is an efficient and scalable technique for purifying biopharmaceuticals. The predominant mode of solute transport in a membrane is convective and hence it is considered better than resin-based chromatography for purifying large proteins. In this paper, we propose a membrane chromatography-based purification method for fast and scalable manufacture of recombinant SARS-CoV-2 trimeric spike protein. A combination of cation exchange z2 laterally-fed membrane chromatography and size exclusion chromatography was found to be suitable for obtaining a homogeneous spike protein sample from mammalian cell culture supernatant. The proposed method is both fast and scalable and could be explored as a method for manufacturing vaccine grade spike protein.


Assuntos
Proteínas Recombinantes , Glicoproteína da Espícula de Coronavírus , Vacinas contra COVID-19 , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/biossíntese , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
2.
Sci Rep ; 12(1): 2505, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1747189

RESUMO

Mpro, the main protease of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is essential for the viral life cycle. Accordingly, several groups have performed in silico screens to identify Mpro inhibitors that might be used to treat SARS-CoV-2 infections. We selected more than five hundred compounds from the top-ranking hits of two very large in silico screens for on-demand synthesis. We then examined whether these compounds could bind to Mpro and inhibit its protease activity. Two interesting chemotypes were identified, which were further evaluated by characterizing an additional five hundred synthesis on-demand analogues. The compounds of the first chemotype denatured Mpro and were considered not useful for further development. The compounds of the second chemotype bound to and enhanced the melting temperature of Mpro. The most active compound from this chemotype inhibited Mpro in vitro with an IC50 value of 1 µM and suppressed replication of the SARS-CoV-2 virus in tissue culture cells. Its mode of binding to Mpro was determined by X-ray crystallography, revealing that it is a non-covalent inhibitor. We propose that the inhibitors described here could form the basis for medicinal chemistry efforts that could lead to the development of clinically relevant inhibitors.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Inibidores de Proteases/química , SARS-CoV-2/enzimologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Nitrilas/química , Nitrilas/metabolismo , Nitrilas/farmacologia , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
3.
Int J Biol Macromol ; 200: 428-437, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1633983

RESUMO

Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays of COVID-19. In this paper, we demonstrate the significant impact of dimerization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N-protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics. The expressed purified protein from E. coli is composed of dimeric and monomeric forms, which have been further characterized using biophysical and immunological techniques. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form. This finding also confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. The sensitivity and specificity of the ELISA at 95% CI are 99.0% (94.5-99.9) and 95.0% (83.0-99.4), respectively, for the highest purified dimeric form of the N protein. As a result, using the highest purified dimeric form will improve the sensitivity of the current nucleocapsid-dependent ELISA for COVID-19 diagnosis, and manufacturers should monitor and maintain the monomer-dimer composition for accurate and robust diagnostics.


Assuntos
Teste para COVID-19/métodos , Proteínas do Nucleocapsídeo de Coronavírus/química , Ensaio de Imunoadsorção Enzimática/métodos , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Dicroísmo Circular , Proteínas do Nucleocapsídeo de Coronavírus/biossíntese , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/isolamento & purificação , Dimerização , Epitopos/química , Escherichia coli/genética , Humanos , Imunoglobulina G/imunologia , Modelos Moleculares , Fosfoproteínas/biossíntese , Fosfoproteínas/química , Fosfoproteínas/imunologia , Fosfoproteínas/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Sensibilidade e Especificidade
4.
Chem Commun (Camb) ; 58(13): 2120-2123, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1639577

RESUMO

The coronavirus 2019 (COVID-19) pandemic is causing serious impacts in the world, and safe and effective vaccines and medicines are the best methods to combat the disease. The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein plays a key role in interacting with the angiotensin-converting enzyme 2 (ACE2) receptor, and is regarded as an important target of vaccines. Herein, we constructed the adjuvant-protein conjugate Pam3CSK4-RBD as a vaccine candidate, in which the N-terminal of the RBD was site-selectively oxidized by transamination and conjugated with the TLR1/2 agonist Pam3CSK4. This demonstrated that the conjugation of Pam3CSK4 significantly enhanced the anti-RBD antibody response and cellular response. In addition, sera from the Pam3CSK4-RBD immunized group efficiently inhibited the binding of the RBD to ACE2 and protected cells from SARS-CoV-2 and four variants of concern (alpha, beta, gamma and delta), indicating that this adjuvant strategy could be one of the effective means for protein vaccine development.


Assuntos
COVID-19/prevenção & controle , Lipopeptídeos/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/química , Vacinas Conjugadas/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Formação de Anticorpos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica , Domínios Proteicos/imunologia , Células RAW 264.7 , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vacinas Conjugadas/administração & dosagem , Vacinas Conjugadas/química
5.
J Med Chem ; 64(19): 14332-14343, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: covidwho-1621195

RESUMO

In addition to a variety of viral-glycoprotein receptors (e.g., heparan sulfate, Niemann-Pick C1, etc.), dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), from the C-type lectin receptor family, plays one of the most important pathogenic functions for a wide range of viruses (e.g., Ebola, human cytomegalovirus (HCMV), HIV-1, severe acute respiratory syndrome coronavirus 2, etc.) that invade host cells before replication; thus, its inhibition represents a relevant extracellular antiviral therapy. We report two novel p-tBu-calixarene glycoclusters 1 and 2, bearing tetrahydroxamic acid groups, which exhibit micromolar inhibition of soluble DC-SIGN binding and provide nanomolar IC50 inhibition of both DC-SIGN-dependent Jurkat cis-cell infection by viral particle pseudotyped with Ebola virus glycoprotein and the HCMV-gB-recombinant glycoprotein interaction with monocyte-derived dendritic cells expressing DC-SIGN. A unique cooperative involvement of sugar, linker, and calixarene core is likely behind the strong avidity of DC-SIGN for these low-valent systems. We claim herein new promising candidates for the rational development of a large spectrum of antiviral therapeutics.


Assuntos
Calixarenos/química , Moléculas de Adesão Celular/antagonistas & inibidores , Glicoconjugados/metabolismo , Glicoproteínas/antagonistas & inibidores , Ácidos Hidroxâmicos/química , Lectinas Tipo C/antagonistas & inibidores , Fenóis/química , Receptores de Superfície Celular/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Citomegalovirus/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Ebolavirus/fisiologia , Glicoconjugados/química , Glicoconjugados/farmacologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Células Jurkat , Lectinas Tipo C/metabolismo , Modelos Biológicos , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Mol Immunol ; 141: 287-296, 2022 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1559780

RESUMO

As the second wave of COVID-19 launched, various variants of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have emerged with a dramatic global spread amongst millions of people causing unprecedented case fatalities and economic shut-downs. That initiated a necessity for developing specific diagnostics and therapeutics along with vaccines to control such a pandemic. This endeavor describes generation of murine derived recombinant single-chain fragment variable (scFv) as a monoclonal antibody (MAb) platform targeting the receptor binding domain (RBD) of Spike protein of SARS-CoV-2. A specific synthesized RBD coding sequence was cloned and expressed in Baculovirus expression system. The recombinant RBD (rRBD) was ascertained to be at the proper encoding size of ∼ 600bp and expressed protein of the molecular weight of ∼ 21KDa. Purified rRBD was proved genuinely antigenic and immunogenic, exhibiting specific reactivity to anti-SARS-CoV-2 antibody in an indirect enzyme-linked immunosorbent assay (ELISA), and inducing strong seroconversion in immunized mice. The scFv phage display library against rRBD was successfully constructed, revealing ∼ 90 % recombination frequency, and great enriching factor reaching 88 % and 25 % in polyclonal Ab-based and MAb-based ELISAs, respectively. Typically, three unique scFvs were generated, selected, purified and molecularly identified. That was manifested by their: accurate structure, close relation to the mouse immunoglobulin (Ig) superfamily, right anchored six complementarily-determining regions (CDRs) as three within variable heavy (vH) and variable light (vL) regions each, and proper configuration of the three-dimensional (3D) structure. Besides, their expression downstream in a non-suppressive amber codon of E. coli strain SS32 created a distinct protein band at an apparent molecular weight of ∼ 27KDa. Moreover, the purified scFvs showed authentic immunoreactivity and specificity to both rRBD and SARS-CoV-2 in western blot and ELISA. Accordingly, these developed scFvs platform might be a functional candidate for research, inexpensive diagnostics and therapeutics, mitigating spread of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19 , COVID-19/diagnóstico , Técnicas de Visualização da Superfície Celular , Epitopos/imunologia , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/sangue , Especificidade de Anticorpos , Baculoviridae , COVID-19/prevenção & controle , Escherichia coli , Feminino , Vetores Genéticos , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Biblioteca de Peptídeos , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Anticorpos de Cadeia Única/biossíntese , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
Bull Exp Biol Med ; 172(1): 53-56, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: covidwho-1520385

RESUMO

The antiviral activity of recombinant human IFN-lambda type 1 (IFNλ-1) against culture strain of SARS-CoV-2 virus was determined by infecting a highly sensitive VeroE6 coronavirus cell culture after preincubation test (the cell monolayer was incubated with 4-fold dilutions of IFNλ-1 in a concentration range of 0.16-42,500 ng/ml in a culture medium for 12 h at 37°C) and without preincubation (simultaneous addition of different concentrations of IFNλ-1 and SARS-CoV-2 infection in a dose of 102 TCID50). The created recombinant human IFNλ-1 demonstrated obvious antiviral activity against SARS-CoV-2 virus in vitro. In the tests with and without preincubation, IFNλ-1 exhibited significant activity, although somewhat lower in variant with simultaneous addition of IFNλ-1 and virus to the cell culture. It should be noted that the antiviral effect of IFNλ-1 was observed in a wide range of concentrations.


Assuntos
Antivirais/farmacologia , Interferons/farmacologia , Proteínas Recombinantes/farmacologia , SARS-CoV-2/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/isolamento & purificação , COVID-19/virologia , Chlorocebus aethiops , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Interferons/biossíntese , Interferons/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , Células Vero , Carga Viral/genética , Tratamento Farmacológico da COVID-19
8.
Chem Biol Drug Des ; 99(2): 233-246, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1488186

RESUMO

Coronavirus (SARS-CoV-2) as a global pandemic has attracted the attention of many scientific centers to find the right treatment. We expressed and purified the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein, and specific RBD aptamers were designed using SELEX method. RNAi targeting nucleocapsid phosphoprotein was synthesized and human lung cells were inoculated with aptamer-functionalized lipid nanoparticles (LNPs) containing RNAi. The results demonstrated that RBD aptamer having KD values of 0.290 nm possessed good affinity. Based on molecular docking and efficacy prediction analysis, siRNA molecule was showed the best action. LNPs were appropriately functionalized by aptamer and contained RNAi molecules. Antiviral assay using q-PCR and ELISA demonstrated that LNP functionalized with 35 µm Apt and containing 30 nm RNAi/ml of cell culture had the best antiviral activity compared to other concentrations. Applied aptamer in the nanocarrier has two important functions. First, it can deliver the drug (RNAi) to the surface of epithelial cells. Second, by binding to the SARS-CoV-2 spike protein, it inhibits the virus entrance into cells. Our data reveal an interaction between the aptamer and the virus, and RNAi targeted the virus RNA. CT scan and the clinical laboratory tests in a clinical case study, a 36-year old man who presented with severe SARS-CoV-2, demonstrated that inhalation of 10 mg Apt-LNPs-RNAi nebulized/day for six days resulted in an improvement in consolidation and ground-glass opacity in lungs on the sixth day of treatment. Our findings suggest the treatment of SARS-CoV-2 infection through inhalation of Aptamer-LNPs-RNAi.


Assuntos
Antivirais/administração & dosagem , Aptâmeros de Nucleotídeos/química , Tratamento Farmacológico da COVID-19 , Lipossomos/química , Nanopartículas/química , RNA Interferente Pequeno/administração & dosagem , Glicoproteína da Espícula de Coronavírus/metabolismo , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Administração por Inalação , Adulto , Alanina/análogos & derivados , Alanina/farmacologia , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Domínios Proteicos/genética , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Técnica de Seleção de Aptâmeros , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Carga Viral/efeitos dos fármacos
9.
Protein Expr Purif ; 190: 106003, 2022 02.
Artigo em Inglês | MEDLINE | ID: covidwho-1474960

RESUMO

SARS-CoV-2 protein subunit vaccines are currently being evaluated by multiple manufacturers to address the global vaccine equity gap, and need for low-cost, easy to scale, safe, and effective COVID-19 vaccines. In this paper, we report on the generation of the receptor-binding domain RBD203-N1 yeast expression construct, which produces a recombinant protein capable of eliciting a robust immune response and protection in mice against SARS-CoV-2 challenge infections. The RBD203-N1 antigen was expressed in the yeast Pichia pastoris X33. After fermentation at the 5 L scale, the protein was purified by hydrophobic interaction chromatography followed by anion exchange chromatography. The purified protein was characterized biophysically and biochemically, and after its formulation, the immunogenicity was evaluated in mice. Sera were evaluated for their efficacy using a SARS-CoV-2 pseudovirus assay. The RBD203-N1 protein was expressed with a yield of 492.9 ± 3.0 mg/L of fermentation supernatant. A two-step purification process produced a >96% pure protein with a recovery rate of 55 ± 3% (total yield of purified protein: 270.5 ± 13.2 mg/L fermentation supernatant). The protein was characterized to be a homogeneous monomer that showed a well-defined secondary structure, was thermally stable, antigenic, and when adjuvanted on Alhydrogel in the presence of CpG it was immunogenic and induced high levels of neutralizing antibodies against SARS-CoV-2 pseudovirus. The characteristics of the RBD203-N1 protein-based vaccine show that this candidate is another well suited RBD-based construct for technology transfer to manufacturing entities and feasibility of transition into the clinic to evaluate its immunogenicity and safety in humans.


Assuntos
Vacinas contra COVID-19 , Expressão Gênica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/farmacologia , Humanos , Camundongos , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , SARS-CoV-2/química , SARS-CoV-2/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/farmacologia
10.
Proc Natl Acad Sci U S A ; 118(42)2021 10 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1447423

RESUMO

Monoclonal antibodies (mAbs) that efficiently neutralize SARS-CoV-2 have been developed at an unprecedented speed. Notwithstanding, there is a vague understanding of the various Ab functions induced beyond antigen binding by the heavy-chain constant domain. To explore the diverse roles of Abs in SARS-CoV-2 immunity, we expressed a SARS-CoV-2 spike protein (SP) binding mAb (H4) in the four IgG subclasses present in human serum (IgG1-4) using glyco-engineered Nicotiana benthamiana plants. All four subclasses, carrying the identical antigen-binding site, were fully assembled in planta and exhibited a largely homogeneous xylose- and fucose-free glycosylation profile. The Ab variants ligated to the SP with an up to fivefold increased binding activity of IgG3. Furthermore, all H4 subtypes were able to neutralize SARS-CoV-2. However, H4-IgG3 exhibited an up to 50-fold superior neutralization potency compared with the other subclasses. Our data point to a strong protective effect of IgG3 Abs in SARS-CoV-2 infection and suggest that superior neutralization might be a consequence of cross-linking the SP on the viral surface. This should be considered in therapy and vaccine development. In addition, we underscore the versatile use of plants for the rapid expression of complex proteins in emergency cases.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/biossíntese , Glicosilação , Humanos , Testes de Neutralização , Proteínas Recombinantes/biossíntese
11.
J Biol Chem ; 297(4): 101238, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1433455

RESUMO

The D614G mutation in the spike protein of SARS-CoV-2 alters the fitness of the virus, leading to the dominant form observed in the COVID-19 pandemic. However, the molecular basis of the mechanism by which this mutation enhances fitness is not clear. Here we demonstrated by cryo-electron microscopy that the D614G mutation resulted in increased propensity of multiple receptor-binding domains (RBDs) in an upward conformation poised for host receptor binding. Multiple substates within the one RBD-up or two RBD-up conformational space were determined. According to negative staining electron microscopy, differential scanning calorimetry, and differential scanning fluorimetry, the most significant impact of the mutation lies in its ability to eliminate the unusual cold-induced unfolding characteristics and to significantly increase the thermal stability under physiological pH. The D614G spike variant also exhibited exceptional long-term stability when stored at 37 °C for up to 2 months. Our findings shed light on how the D614G mutation enhances the infectivity of SARS-CoV-2 through a stabilizing mutation and suggest an approach for better design of spike protein-based conjugates for vaccine development.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/patologia , COVID-19/virologia , Varredura Diferencial de Calorimetria , Microscopia Crioeletrônica , Humanos , Mutagênese Sítio-Dirigida , Domínios Proteicos , Estabilidade Proteica , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Temperatura
12.
N Biotechnol ; 66: 25-35, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: covidwho-1428279

RESUMO

The aim of this survey is to identify and characterize new products in plant biotechnology since 2015, especially in relation to the advent of New Breeding Techniques (NBTs) such as gene editing based on the CRISPR-Cas system. Transgenic (gene transfer or gene silencing) and gene edited traits which are approved or marketed in at least one country, or which have a non-regulated status in the USA, are collected, as well as related patents worldwide. In addition, to shed light on potential innovation for Africa, field trials on the continent are examined. The compiled data are classified in application categories, including agronomic improvements, industrial use and medical use, namely production of recombinant therapeutic molecules or vaccines (including against Covid-19). The data indicate that gene editing appears to be an effective complement to 'classical' transgenesis, the use of which is not declining, rather than a replacement, a trend also observed in the patenting landscape. Nevertheless, increased use of gene editing is apparent. Compared to transgenesis, gene editing has increased the proportion of some crop species and decreased others amongst approved, non-regulated or marketed products. A similar differential trend is observed for breeding traits. Gene editing has also favored the emergence of new private companies. China, and prevalently its public sector, overwhelmingly dominates the patenting landscape, but not the approved/marketed one, which is dominated by the USA. The data point in the direction that regulatory environments will favor or discourage innovation.


Assuntos
Edição de Genes , Melhoramento Vegetal , Plantas Geneticamente Modificadas , Biotecnologia , Sistemas CRISPR-Cas , Técnicas de Transferência de Genes , Genoma de Planta , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/biossíntese , Vacinas/biossíntese
13.
J Biol Chem ; 297(4): 101208, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1415532

RESUMO

Emergence of new severe acute respiratory syndrome coronavirus 2 variants has raised concerns related to the effectiveness of vaccines and antibody therapeutics developed against the unmutated wildtype virus. Here, we examined the effect of the 12 most commonly occurring mutations in the receptor-binding domain of the spike protein on its expression, stability, activity, and antibody escape potential. Stability was measured using thermal denaturation, and the activity and antibody escape potential were measured using isothermal titration calorimetry in terms of binding to the human angiotensin-converting enzyme 2 and to neutralizing human antibody CC12.1, respectively. Our results show that mutants differ in their expression levels. Of the eight best-expressed mutants, two (N501Y and K417T/E484K/N501Y) showed stronger affinity to angiotensin-converting enzyme 2 compared with the wildtype, whereas four (Y453F, S477N, T478I, and S494P) had similar affinity and two (K417N and E484K) had weaker affinity than the wildtype. Compared with the wildtype, four mutants (K417N, Y453F, N501Y, and K417T/E484K/N501Y) had weaker affinity for the CC12.1 antibody, whereas two (S477N and S494P) had similar affinity, and two (T478I and E484K) had stronger affinity than the wildtype. Mutants also differ in their thermal stability, with the two least stable mutants showing reduced expression. Taken together, these results indicate that multiple factors contribute toward the natural selection of variants, and all these factors need to be considered to understand the evolution of the virus. In addition, since not all variants can escape a given neutralizing antibody, antibodies to treat new variants can be chosen based on the specific mutations in that variant.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Reações Antígeno-Anticorpo , COVID-19/patologia , COVID-19/virologia , Células HEK293 , Humanos , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Domínios Proteicos/genética , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Temperatura de Transição
14.
J Biol Chem ; 297(4): 101175, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1401575

RESUMO

The spike protein is the main protein component of the SARS-CoV-2 virion surface. The spike receptor-binding motif mediates recognition of the human angiotensin-converting enzyme 2 receptor, a critical step in infection, and is the preferential target for spike-neutralizing antibodies. Posttranslational modifications of the spike receptor-binding motif have been shown to modulate viral infectivity and host immune response, but these modifications are still being explored. Here we studied asparagine deamidation of the spike protein, a spontaneous event that leads to the appearance of aspartic and isoaspartic residues, which affect both the protein backbone and its charge. We used computational prediction and biochemical experiments to identify five deamidation hotspots in the SARS-CoV-2 spike protein. Asparagine residues 481 and 501 in the receptor-binding motif deamidate with a half-life of 16.5 and 123 days at 37 °C, respectively. Deamidation is significantly slowed at 4 °C, indicating a strong dependence of spike protein molecular aging on environmental conditions. Deamidation of the spike receptor-binding motif decreases the equilibrium constant for binding to the human angiotensin-converting enzyme 2 receptor more than 3.5-fold, yet its high conservation pattern suggests some positive effect on viral fitness. We propose a model for deamidation of the full SARS-CoV-2 virion illustrating how deamidation of the spike receptor-binding motif could lead to the accumulation on the virion surface of a nonnegligible chemically diverse spike population in a timescale of days. Our findings provide a potential mechanism for molecular aging of the spike protein with significant consequences for understanding virus infectivity and vaccine development.


Assuntos
SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Motivos de Aminoácidos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Concentração de Íons de Hidrogênio , Interferometria , Cinética , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química
15.
PLoS One ; 16(6): e0252507, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1388918

RESUMO

We recently developed 'cellular' reagents-lyophilized bacteria overexpressing proteins of interest-that can replace commercial pure enzymes in typical diagnostic and molecular biology reactions. To make cellular reagent technology widely accessible and amenable to local production with minimal instrumentation, we now report a significantly simplified method for preparing cellular reagents that requires only a common bacterial incubator to grow and subsequently dry enzyme-expressing bacteria at 37°C with the aid of inexpensive chemical desiccants. We demonstrate application of such dried cellular reagents in common molecular and synthetic biology processes, such as PCR, qPCR, reverse transcription, isothermal amplification, and Golden Gate DNA assembly, in building easy-to-use testing kits, and in rapid reagent production for meeting extraordinary diagnostic demands such as those being faced in the ongoing SARS-CoV-2 pandemic. Furthermore, we demonstrate feasibility of local production by successfully implementing this minimized procedure and preparing cellular reagents in several countries, including the United Kingdom, Cameroon, and Ghana. Our results demonstrate possibilities for readily scalable local and distributed reagent production, and further instantiate the opportunities available via synthetic biology in general.


Assuntos
Teste para COVID-19/normas , COVID-19/diagnóstico , COVID-19/epidemiologia , Testes Diagnósticos de Rotina/normas , Indicadores e Reagentes/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , SARS-CoV-2/genética , COVID-19/virologia , Teste para COVID-19/métodos , Camarões/epidemiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Geobacillus stearothermophilus/genética , Geobacillus stearothermophilus/metabolismo , Gana/epidemiologia , Humanos , Indicadores e Reagentes/química , Indicadores e Reagentes/metabolismo , Indicadores e Reagentes/provisão & distribuição , Técnicas de Diagnóstico Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Biologia Sintética/métodos , Transformação Bacteriana , Reino Unido/epidemiologia
16.
Sci Rep ; 10(1): 21393, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: covidwho-1387456

RESUMO

Antibodies are essential tools for therapy and diagnostics. Yet, production remains expensive as it is mostly done in mammalian expression systems. As most therapeutic IgG require mammalian glycosylation to interact with the human immune system, other expression systems are rarely used for production. However, for neutralizing antibodies that are not required to activate the human immune system as well as antibodies used in diagnostics, a cheaper production system would be advantageous. In our study, we show cost-efficient, easy and high yield production of antibodies as well as various secreted antigens including Interleukins and SARS-CoV-2 related proteins in a baculovirus-free insect cell expression system. To improve yields, we optimized the expression vector, media and feeding strategies. In addition, we showed the feasibility of lyophilization of the insect cell produced antibodies. Furthermore, stability and activity of the antibodies was compared to antibodies produced by Expi293F cells revealing a lower aggregation of antibodies originating from High Five cell production. Finally, the newly established High Five expression system was compared to the Expi293F mammalian expression system in regard of yield and costs. Most interestingly, all tested proteins were producible in our High Five cell expression system what was not the case in the Expi293F system, hinting that the High Five cell system is especially suited to produce difficult-to-express target proteins.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Neutralizantes/biossíntese , Antígenos Virais/biossíntese , Clonagem Molecular , Proteínas Recombinantes/biossíntese , SARS-CoV-2/imunologia , Animais , Células HEK293 , Humanos , Estabilidade Proteica , Spodoptera
17.
Sci Rep ; 10(1): 18149, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1387454

RESUMO

Antigens displayed on self-assembling nanoparticles can stimulate strong immune responses and have been playing an increasingly prominent role in structure-based vaccines. However, the development of such immunogens is often complicated by inefficiencies in their production. To alleviate this issue, we developed a plug-and-play platform using the spontaneous isopeptide-bond formation of the SpyTag:SpyCatcher system to display trimeric antigens on self-assembling nanoparticles, including the 60-subunit Aquifex aeolicus lumazine synthase (LuS) and the 24-subunit Helicobacter pylori ferritin. LuS and ferritin coupled to SpyTag expressed well in a mammalian expression system when an N-linked glycan was added to the nanoparticle surface. The respiratory syncytial virus fusion (F) glycoprotein trimer-stabilized in the prefusion conformation and fused with SpyCatcher-could be efficiently conjugated to LuS-SpyTag or ferritin-SpyTag, enabling multivalent display of F trimers with prefusion antigenicity. Similarly, F-glycoprotein trimers from human parainfluenza virus-type 3 and spike-glycoprotein trimers from SARS-CoV-2 could be displayed on LuS nanoparticles with decent yield and antigenicity. Notably, murine vaccination with 0.08 µg of SARS-CoV-2 spike-LuS nanoparticle elicited similar neutralizing responses as 2.0 µg of spike, which was ~ 25-fold higher on a weight-per-weight basis. The versatile platform described here thus allows for multivalent plug-and-play presentation on self-assembling nanoparticles of trimeric viral antigens, with SARS-CoV-2 spike-LuS nanoparticles inducing particularly potent neutralizing responses.


Assuntos
Antígenos/imunologia , Betacoronavirus/metabolismo , Nanopartículas/química , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Antígenos/genética , Antígenos/metabolismo , Aquifex , Bactérias/enzimologia , Proteínas de Bactérias/genética , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus , Ferritinas/genética , Helicobacter pylori/metabolismo , Humanos , Camundongos , Complexos Multienzimáticos/genética , Testes de Neutralização , Pandemias , Pneumonia Viral , Multimerização Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Propriedades de Superfície
18.
J Biol Chem ; 297(4): 101112, 2021 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1364203

RESUMO

S-acylation, also known as palmitoylation, is the most widely prevalent form of protein lipidation, whereby long-chain fatty acids get attached to cysteine residues facing the cytosol. In humans, 23 members of the zDHHC family of integral membrane enzymes catalyze this modification. S-acylation is critical for the life cycle of many enveloped viruses. The Spike protein of SARS-CoV-2, the causative agent of COVID-19, has the most cysteine-rich cytoplasmic tail among known human pathogens in the closely related family of ß-coronaviruses; however, it is unclear which of the cytoplasmic cysteines are S-acylated, and what the impact of this modification is on viral infectivity. Here we identify specific cysteine clusters in the Spike protein of SARS-CoV-2 that are targets of S-acylation. Interestingly, when we investigated the effect of the cysteine clusters using pseudotyped virus, mutation of the same three clusters of cysteines severely compromised viral infectivity. We developed a library of expression constructs of human zDHHC enzymes and used them to identify zDHHC enzymes that can S-acylate SARS-CoV-2 Spike protein. Finally, we reconstituted S-acylation of SARS-CoV-2 Spike protein in vitro using purified zDHHC enzymes. We observe a striking heterogeneity in the S-acylation status of the different cysteines in our in cellulo experiments, which, remarkably, was recapitulated by the in vitro assay. Altogether, these results bolster our understanding of a poorly understood posttranslational modification integral to the SARS-CoV-2 Spike protein. This study opens up avenues for further mechanistic dissection and lays the groundwork toward developing future strategies that could aid in the identification of targeted small-molecule modulators.


Assuntos
COVID-19/patologia , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Acilação , Aciltransferases/genética , Aciltransferases/metabolismo , Sequência de Aminoácidos , COVID-19/virologia , Cisteína/metabolismo , Células HEK293 , Humanos , Lipoilação , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2/isolamento & purificação , Alinhamento de Sequência , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
19.
Methods Mol Biol ; 2305: 129-140, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1355903

RESUMO

The expression of mammalian recombinant proteins in insect cell lines using transient-plasmid-based gene expression enables the production of high-quality protein samples. Here, the procedure for virus-free transient gene expression (TGE) in High Five insect cells is described in detail. The parameters that determine the efficiency and reproducibility of the method are presented in a robust protocol for easy implementation and set-up of the method. The applicability of the TGE method in High Five cells for proteomic, structural, and functional analysis of the expressed proteins is shown.


Assuntos
Biotecnologia/métodos , Clonagem Molecular , Insetos/metabolismo , Glicoproteína da Espícula de Coronavírus/biossíntese , Transfecção/métodos , Animais , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Linhagem Celular , Expressão Gênica , Glicosilação , Humanos , Insetos/citologia , Mamíferos/genética , Mamíferos/metabolismo , Plasmídeos , Proteômica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
20.
PLoS One ; 16(8): e0255796, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1350170

RESUMO

Serological assays to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might contribute to confirming the suspected coronavirus disease 2019 (COVID-19) in patients not detected with molecular assays. Human antibodies that target the host angiotensin-converting enzyme 2-binding domain of the viral spike protein are a target for serodiagnosis and therapeutics. This study aimed to characterize the classes and subclasses of antibody responses to a recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients and investigated the reactivity of these antibodies in patients with other tropical infections and healthy individuals in Thailand. ELISAs for IgM, IgA, IgG and IgG subclasses based on RBD antigen were developed and tested with time series of 27 serum samples from 15 patients with COVID-19 and 60 samples from pre-COVID-19 outbreaks including acute dengue fever, murine typhus, influenza, leptospirosis and healthy individuals. Both RBD-specific IgA and IgG were detected in only 21% of the COVID-19 patients in the acute phase. The median IgA and IgG levels were significantly higher in the convalescent serum sample compared to the acute serum sample (P < 0.05). We observed the highest correlation between levels of IgG and IgA (rho = 0. 92). IgG1 and IgG3 were the major IgG subclasses detected in SARS-CoV-2 infection. Only acute IgG3 level was negatively associated with viral detection based on RT-PCR of ORF1ab gene (rho = -0.57). The median IgA and IgG levels in convalescence sera of COVID-19 patients were significantly higher than healthy individuals and convalescent sera of other febrile infectious patients. The analyses of antibody classes and subclasses provide insights into human immune responses against SARS-CoV-2 during natural infection and interpretation of antibody assays.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos , COVID-19/patologia , Isotipos de Imunoglobulinas/sangue , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , COVID-19/sangue , COVID-19/virologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Domínios Proteicos/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tailândia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA